Nuprl Lemma : eu-bisect-line_wf

[e:EuclideanPlane]. ∀[a,b:Point].  (eu-bisect-line(e;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-bisect-line: eu-bisect-line(e;a;b) euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] euclidean-plane: EuclideanPlane and: P ∧ Q prop: eu-bisect-line: eu-bisect-line(e;a;b) member: t ∈ T uall: [x:A]. B[x]
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality lambdaEquality hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    (eu-bisect-line(e;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2016_07_08-PM-05_54_25
Last ObjectModification: 2016_07_05-PM-03_04_18

Theory : euclidean!geometry


Home Index