Nuprl Lemma : eu-bisect-line_wf
∀[e:EuclideanPlane]. ∀[a,b:Point].  (eu-bisect-line(e;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-bisect-line: eu-bisect-line(e;a;b)
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
prop: ℙ
, 
eu-bisect-line: eu-bisect-line(e;a;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    (eu-bisect-line(e;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2016_07_08-PM-05_54_25
Last ObjectModification:
2016_07_05-PM-03_04_18
Theory : euclidean!geometry
Home
Index