Step * 2 1 1 1 1 1 1 1 2 of Lemma eu-cong3-to-conga-aux


1. EuclideanPlane
2. Point
3. Point
4. a' Point
5. a0 Point
6. e0 Point
7. Point
8. d' Point
9. d0 Point
10. ¬(b a ∈ Point)
11. ¬(b a' ∈ Point)
12. ¬(e0 d ∈ Point)
13. ¬(e0 d' ∈ Point)
14. b_a_a0
15. e0_d_d0
16. ba'=e0d'
17. aa0=e0d
18. dd0=ba
19. a0b=e0d0
20. ¬a'a0=d'd0
21. b_a_a'
22. b_a'_a0
23. e0_d'_d
⊢ False
BY
(InstLemma `eu-add-length-between` [⌜e⌝;⌜b⌝;⌜a'⌝;⌜a0⌝]⋅ THENA Auto)
THEN (InstLemma `eu-add-length-between` [⌜e⌝;⌜e0⌝;⌜d'⌝;⌜d0⌝]⋅ THENA Auto)
THEN (InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜b⌝;⌜a'⌝;⌜e0⌝;⌜d'⌝]⋅ THENA Auto)
THEN (InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜a'⌝;⌜a0⌝;⌜d'⌝;⌜d0⌝]⋅ THENA Auto)
THEN (InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜b⌝;⌜a0⌝;⌜e0⌝;⌜d0⌝]⋅ THENA Auto) }

1
1. EuclideanPlane
2. Point
3. Point
4. a' Point
5. a0 Point
6. e0 Point
7. Point
8. d' Point
9. d0 Point
10. ¬(b a ∈ Point)
11. ¬(b a' ∈ Point)
12. ¬(e0 d ∈ Point)
13. ¬(e0 d' ∈ Point)
14. b_a_a0
15. e0_d_d0
16. ba'=e0d'
17. aa0=e0d
18. dd0=ba
19. a0b=e0d0
20. ¬a'a0=d'd0
21. b_a_a'
22. b_a'_a0
23. e0_d'_d
24. |ba0| |ba'| |a'a0| ∈ {p:Point| O_X_p} 
25. |e0d0| |e0d'| |d'd0| ∈ {p:Point| O_X_p} 
26. uiff(ba'=e0d';|ba'| |e0d'| ∈ {p:Point| O_X_p} )
27. uiff(a'a0=d'd0;|a'a0| |d'd0| ∈ {p:Point| O_X_p} )
28. uiff(ba0=e0d0;|ba0| |e0d0| ∈ {p:Point| O_X_p} )
⊢ False


Latex:


Latex:

1.  e  :  EuclideanPlane
2.  b  :  Point
3.  a  :  Point
4.  a'  :  Point
5.  a0  :  Point
6.  e0  :  Point
7.  d  :  Point
8.  d'  :  Point
9.  d0  :  Point
10.  \mneg{}(b  =  a)
11.  \mneg{}(b  =  a')
12.  \mneg{}(e0  =  d)
13.  \mneg{}(e0  =  d')
14.  b\_a\_a0
15.  e0\_d\_d0
16.  ba'=e0d'
17.  aa0=e0d
18.  dd0=ba
19.  a0b=e0d0
20.  \mneg{}a'a0=d'd0
21.  b\_a\_a'
22.  b\_a'\_a0
23.  e0\_d'\_d
\mvdash{}  False


By


Latex:
(InstLemma  `eu-add-length-between`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a'\mkleeneclose{};\mkleeneopen{}a0\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-add-length-between`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}e0\mkleeneclose{};\mkleeneopen{}d'\mkleeneclose{};\mkleeneopen{}d0\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a'\mkleeneclose{};\mkleeneopen{}e0\mkleeneclose{};\mkleeneopen{}d'\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a'\mkleeneclose{};\mkleeneopen{}a0\mkleeneclose{};\mkleeneopen{}d'\mkleeneclose{};\mkleeneopen{}d0\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a0\mkleeneclose{};\mkleeneopen{}e0\mkleeneclose{};\mkleeneopen{}d0\mkleeneclose{}]\mcdot{}  THENA  Auto)




Home Index