Nuprl Lemma : eu-cong3-to-conga-aux

e:EuclideanPlane. ∀b,a,a',a0,e0,d,d',d0:Point.
  (out(b aa')  out(e0 dd')  b_a_a0  e0_d_d0  ba'=e0d'  aa0=e0d  dd0=ba  (ba0=e0d0 ∧ a'a0=d'd0))


Proof




Definitions occuring in Statement :  eu-out: out(p ab) euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane uimplies: supposing a not: ¬A uiff: uiff(P;Q) eu-out: out(p ab) stable: Stable{P} false: False so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q squash: T true: True
Lemmas referenced :  eu-congruent_wf eu-between-eq_wf eu-out_wf eu-point_wf euclidean-plane_wf eu-five-segment equal_wf eu-between-eq-symmetry eu-congruent-iff-length eu-length-flip eu-congruent-trivial stable__eu-congruent not_wf eu-between-eq-same-side eu-between-eq-seg-eq eu-add-length-between set_wf eu-O_wf eu-X_wf iff_weakening_equal and_wf eu-add-length_wf eu-length_wf eu-mk-seg_wf eu-add-length-zero eu-add-length-assoc eu-add-length-cancel-left eu-between-eq-trivial-right eu-sum-eq-x eu-ab-eq-x squash_wf true_wf euclidean-structure_wf eu-segment_wf eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality dependent_functionElimination independent_isectElimination productElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityEquality sqequalRule lambdaEquality dependent_set_memberEquality setEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality hyp_replacement Error :applyLambdaEquality,  equalityElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}b,a,a',a0,e0,d,d',d0:Point.
    (out(b  aa')
    {}\mRightarrow{}  out(e0  dd')
    {}\mRightarrow{}  b\_a\_a0
    {}\mRightarrow{}  e0\_d\_d0
    {}\mRightarrow{}  ba'=e0d'
    {}\mRightarrow{}  aa0=e0d
    {}\mRightarrow{}  dd0=ba
    {}\mRightarrow{}  (ba0=e0d0  \mwedge{}  a'a0=d'd0))



Date html generated: 2016_10_26-AM-07_45_17
Last ObjectModification: 2016_07_12-AM-08_49_46

Theory : euclidean!geometry


Home Index