Nuprl Lemma : eu-ab-eq-x

e:EuclideanPlane. ∀a,b:Point.  ((a b ∈ Point)  (X |ab| ∈ {p:Point| O_X_p} ))


Proof




Definitions occuring in Statement :  eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point all: x:A. B[x] implies:  Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane squash: T subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  eu-length_wf eu-mk-seg_wf and_wf eu-between-eq-trivial-right iff_weakening_equal eu-O_wf eu-length-null-segment eu-X_wf eu-between-eq_wf euclidean-plane_wf eu-point_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination setEquality sqequalRule natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination dependent_set_memberEquality independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    ((a  =  b)  {}\mRightarrow{}  (X  =  |ab|))



Date html generated: 2016_05_18-AM-06_44_13
Last ObjectModification: 2016_01_16-PM-10_28_49

Theory : euclidean!geometry


Home Index