Nuprl Lemma : eu-between-eq-same-side

e:EuclideanPlane. ∀[A,B,C,D:Point].  ((¬A_C_D) ∧ A_D_C))) supposing ((¬(A B ∈ Point)) and A_B_C and A_B_D)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False and: P ∧ Q prop: euclidean-plane: EuclideanPlane exists: x:A. B[x] cand: c∧ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q squash: T true: True eu-point: Point record-select: r.x sq_type: SQType(T)
Lemmas referenced :  eu-between-eq-same2 equal_wf eu-point_wf eu-extend-exists not_wf eu-between-eq_wf euclidean-plane_wf eu-congruent_wf eu-congruence-identity-sym eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-three-segment eu-congruent-iff-length eu-length-flip and_wf eu-construction-unicity eu-between-eq-exchange4 eu-between-eq-outer-trans eu-add-length-between eu-O_wf eu-X_wf eu-add-length_wf eu-length_wf eu-mk-seg_wf set_wf eu-add-length-assoc iff_weakening_equal squash_wf true_wf eu-add-length-comm eu-congruent-flip eu-five-segment not-not-inner-pasch exists_wf eu-congruent-refl eu-inner-five-segment eu-congruence-identity3 eu-congruence-identity2 eu-between-eq-same eu-between-eq-implies-colinear eu-congruent-symmetry eu-colinear-five-segment eu-congruence-identity subtype_base_sq eu-colinear-equidistant eu-between-eq-implies-colinear2 eu-between-eq-implies-colinear3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut thin sqequalHypSubstitution productElimination extract_by_obid isectElimination because_Cache hypothesisEquality independent_isectElimination hypothesis independent_functionElimination voidElimination setElimination rename dependent_functionElimination dependent_set_memberEquality productEquality sqequalRule lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry promote_hyp hyp_replacement Error :applyLambdaEquality,  independent_pairFormation applyEquality setEquality equalityEquality imageElimination natural_numberEquality imageMemberEquality baseClosed comment instantiate

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}A\_C\_D)  \mwedge{}  (\mneg{}A\_D\_C)))  supposing  ((\mneg{}(A  =  B))  and  A\_B\_C  and  A\_B\_D)



Date html generated: 2016_10_26-AM-07_43_14
Last ObjectModification: 2016_07_12-AM-08_12_32

Theory : euclidean!geometry


Home Index