Nuprl Lemma : eu-between-eq-same-side
∀e:EuclideanPlane. ∀[A,B,C,D:Point].  (¬((¬A_C_D) ∧ (¬A_D_C))) supposing ((¬(A = B ∈ Point)) and A_B_C and A_B_D)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
eu-point: Point
, 
record-select: r.x
, 
sq_type: SQType(T)
Lemmas referenced : 
eu-between-eq-same2, 
equal_wf, 
eu-point_wf, 
eu-extend-exists, 
not_wf, 
eu-between-eq_wf, 
euclidean-plane_wf, 
eu-congruent_wf, 
eu-congruence-identity-sym, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3, 
eu-three-segment, 
eu-congruent-iff-length, 
eu-length-flip, 
and_wf, 
eu-construction-unicity, 
eu-between-eq-exchange4, 
eu-between-eq-outer-trans, 
eu-add-length-between, 
eu-O_wf, 
eu-X_wf, 
eu-add-length_wf, 
eu-length_wf, 
eu-mk-seg_wf, 
set_wf, 
eu-add-length-assoc, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
eu-add-length-comm, 
eu-congruent-flip, 
eu-five-segment, 
not-not-inner-pasch, 
exists_wf, 
eu-congruent-refl, 
eu-inner-five-segment, 
eu-congruence-identity3, 
eu-congruence-identity2, 
eu-between-eq-same, 
eu-between-eq-implies-colinear, 
eu-congruent-symmetry, 
eu-colinear-five-segment, 
eu-congruence-identity, 
subtype_base_sq, 
eu-colinear-equidistant, 
eu-between-eq-implies-colinear2, 
eu-between-eq-implies-colinear3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
dependent_set_memberEquality, 
productEquality, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hyp_replacement, 
Error :applyLambdaEquality, 
independent_pairFormation, 
applyEquality, 
setEquality, 
equalityEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
comment, 
instantiate
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}A\_C\_D)  \mwedge{}  (\mneg{}A\_D\_C)))  supposing  ((\mneg{}(A  =  B))  and  A\_B\_C  and  A\_B\_D)
Date html generated:
2016_10_26-AM-07_43_14
Last ObjectModification:
2016_07_12-AM-08_12_32
Theory : euclidean!geometry
Home
Index