Nuprl Lemma : not-not-inner-pasch

e:EuclideanPlane. ∀a,b,c:Point. ∀p:{p:Point| a_p_c} . ∀q:{q:Point| b_q_c} .  (¬¬(∃x:Point. (p_x_b ∧ q_x_a)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] stable: Stable{P} uimplies: supposing a exists: x:A. B[x] iff: ⇐⇒ Q subtype_rel: A ⊆B cand: c∧ B rev_implies:  Q
Lemmas referenced :  not_wf exists_wf eu-point_wf eu-between-eq_wf set_wf euclidean-plane_wf eu-colinear-cases equal_wf eu-between_wf eu-colinear_wf dneg_elim_a all_wf stable_wf eu-between-eq-same eu-between-eq-symmetry eu-between-eq-trivial-left eu-between-eq-trivial-right eu-between-implies-between-eq eu-between-eq-exchange3 eu-between-eq-inner-trans eu-between-eq-exchange4 eu-between-eq-def eu-inner-pasch-property eu-inner-pasch_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin setElimination rename hypothesis sqequalHypSubstitution independent_functionElimination voidElimination introduction extract_by_obid isectElimination because_Cache sqequalRule lambdaEquality productEquality hypothesisEquality dependent_functionElimination isect_memberFormation equalityEquality addLevel impliesFunctionality productElimination levelHypothesis equalitySymmetry hyp_replacement Error :applyLambdaEquality,  instantiate universeEquality functionEquality applyEquality cumulativity independent_isectElimination dependent_pairFormation independent_pairFormation promote_hyp dependent_set_memberEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.  \mforall{}p:\{p:Point|  a\_p\_c\}  .  \mforall{}q:\{q:Point|  b\_q\_c\}  .
    (\mneg{}\mneg{}(\mexists{}x:Point.  (p\_x\_b  \mwedge{}  q\_x\_a)))



Date html generated: 2016_10_26-AM-07_41_25
Last ObjectModification: 2016_07_12-AM-08_08_24

Theory : euclidean!geometry


Home Index