Nuprl Lemma : not-not-inner-pasch
∀e:EuclideanPlane. ∀a,b,c:Point. ∀p:{p:Point| a_p_c} . ∀q:{q:Point| b_q_c} .  (¬¬(∃x:Point. (p_x_b ∧ q_x_a)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
exists_wf, 
eu-point_wf, 
eu-between-eq_wf, 
set_wf, 
euclidean-plane_wf, 
eu-colinear-cases, 
equal_wf, 
eu-between_wf, 
eu-colinear_wf, 
dneg_elim_a, 
all_wf, 
stable_wf, 
eu-between-eq-same, 
eu-between-eq-symmetry, 
eu-between-eq-trivial-left, 
eu-between-eq-trivial-right, 
eu-between-implies-between-eq, 
eu-between-eq-exchange3, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange4, 
eu-between-eq-def, 
eu-inner-pasch-property, 
eu-inner-pasch_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
setElimination, 
rename, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberFormation, 
equalityEquality, 
addLevel, 
impliesFunctionality, 
productElimination, 
levelHypothesis, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
instantiate, 
universeEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation, 
promote_hyp, 
dependent_set_memberEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.  \mforall{}p:\{p:Point|  a\_p\_c\}  .  \mforall{}q:\{q:Point|  b\_q\_c\}  .
    (\mneg{}\mneg{}(\mexists{}x:Point.  (p\_x\_b  \mwedge{}  q\_x\_a)))
Date html generated:
2016_10_26-AM-07_41_25
Last ObjectModification:
2016_07_12-AM-08_08_24
Theory : euclidean!geometry
Home
Index