Nuprl Lemma : eu-colinear-cases

e:EuclideanStructure
  ∀[a,b,c:Point].
    ∀X:ℙ
      (Stable{X}
       (((¬(a b ∈ Point)) ∧ (c a ∈ Point))  X)
       (((¬(a b ∈ Point)) ∧ (c b ∈ Point))  X)
       (((¬(a b ∈ Point)) ∧ c-a-b)  X)
       (((¬(a b ∈ Point)) ∧ a-c-b)  X)
       (((¬(a b ∈ Point)) ∧ a-b-c)  X)
       ((¬Colinear(a;b;c))  X)
       X)


Proof




Definitions occuring in Statement :  eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-point: Point euclidean-structure: EuclideanStructure stable: Stable{P} uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q stable: Stable{P} uimplies: supposing a not: ¬A member: t ∈ T prop: false: False iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q
Lemmas referenced :  not_wf eu-colinear_wf and_wf equal_wf eu-point_wf eu-between_wf stable_wf euclidean-structure_wf eu-not-not-colinear or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution independent_isectElimination thin cut lemma_by_obid isectElimination hypothesisEquality hypothesis functionEquality universeEquality independent_functionElimination voidElimination dependent_functionElimination productElimination unionElimination independent_pairFormation

Latex:
\mforall{}e:EuclideanStructure
    \mforall{}[a,b,c:Point].
        \mforall{}X:\mBbbP{}
            (Stable\{X\}
            {}\mRightarrow{}  (((\mneg{}(a  =  b))  \mwedge{}  (c  =  a))  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (((\mneg{}(a  =  b))  \mwedge{}  (c  =  b))  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (((\mneg{}(a  =  b))  \mwedge{}  c-a-b)  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (((\mneg{}(a  =  b))  \mwedge{}  a-c-b)  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (((\mneg{}(a  =  b))  \mwedge{}  a-b-c)  {}\mRightarrow{}  X)
            {}\mRightarrow{}  ((\mneg{}Colinear(a;b;c))  {}\mRightarrow{}  X)
            {}\mRightarrow{}  X)



Date html generated: 2016_05_18-AM-06_35_44
Last ObjectModification: 2015_12_28-AM-09_28_57

Theory : euclidean!geometry


Home Index