Nuprl Lemma : eu-not-not-colinear

e:EuclideanStructure
  ∀[a,b,c:Point].
    (¬¬Colinear(a;b;c) ⇐⇒ (a b ∈ Point)) ∧ (¬¬((c a ∈ Point) ∨ (c b ∈ Point) ∨ c-a-b ∨ a-c-b ∨ a-b-c)))


Proof




Definitions occuring in Statement :  eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) uimplies: supposing a or: P ∨ Q all: x:A. B[x] guard: {T}
Lemmas referenced :  and_wf not_wf equal_wf eu-point_wf eu-between_wf or_wf not_over_or eu-colinear_wf iff_wf euclidean-structure_wf eu-colinear-def
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaFormation cut thin sqequalHypSubstitution hypothesis independent_functionElimination productElimination voidElimination lemma_by_obid isectElimination hypothesisEquality addLevel impliesFunctionality independent_isectElimination levelHypothesis promote_hyp andLevelFunctionality sqequalRule impliesLevelFunctionality productEquality because_Cache equalityEquality isect_memberFormation introduction independent_pairEquality lambdaEquality dependent_functionElimination isect_memberEquality inlFormation inrFormation

Latex:
\mforall{}e:EuclideanStructure
    \mforall{}[a,b,c:Point].
        (\mneg{}\mneg{}Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}(a  =  b))  \mwedge{}  (\mneg{}\mneg{}((c  =  a)  \mvee{}  (c  =  b)  \mvee{}  c-a-b  \mvee{}  a-c-b  \mvee{}  a-b-c)))



Date html generated: 2016_05_18-AM-06_32_50
Last ObjectModification: 2015_12_28-AM-09_28_50

Theory : euclidean!geometry


Home Index