Nuprl Lemma : eu-not-not-colinear
∀e:EuclideanStructure
  ∀[a,b,c:Point].
    (¬¬Colinear(a;b;c) 
⇐⇒ (¬(a = b ∈ Point)) ∧ (¬¬((c = a ∈ Point) ∨ (c = b ∈ Point) ∨ c-a-b ∨ a-c-b ∨ a-b-c)))
Proof
Definitions occuring in Statement : 
eu-colinear: Colinear(a;b;c)
, 
eu-between: a-b-c
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
and_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-between_wf, 
or_wf, 
not_over_or, 
eu-colinear_wf, 
iff_wf, 
euclidean-structure_wf, 
eu-colinear-def
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
productElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
addLevel, 
impliesFunctionality, 
independent_isectElimination, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality, 
sqequalRule, 
impliesLevelFunctionality, 
productEquality, 
because_Cache, 
equalityEquality, 
isect_memberFormation, 
introduction, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}e:EuclideanStructure
    \mforall{}[a,b,c:Point].
        (\mneg{}\mneg{}Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}(a  =  b))  \mwedge{}  (\mneg{}\mneg{}((c  =  a)  \mvee{}  (c  =  b)  \mvee{}  c-a-b  \mvee{}  a-c-b  \mvee{}  a-b-c)))
Date html generated:
2016_05_18-AM-06_32_50
Last ObjectModification:
2015_12_28-AM-09_28_50
Theory : euclidean!geometry
Home
Index