Nuprl Lemma : eu-between-implies-between-eq

e:EuclideanPlane. ∀[a,b,c:Point].  a_b_c supposing a-b-c


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-between: a-b-c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T euclidean-plane: EuclideanPlane iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q not: ¬A false: False prop:
Lemmas referenced :  eu-between-eq-def and_wf not_wf equal_wf eu-point_wf eu-between_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality isectElimination hypothesis productElimination independent_functionElimination voidElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    a\_b\_c  supposing  a-b-c



Date html generated: 2016_05_18-AM-06_33_54
Last ObjectModification: 2015_12_28-AM-09_27_50

Theory : euclidean!geometry


Home Index