Nuprl Lemma : eu-between-implies-between-eq
∀e:EuclideanPlane. ∀[a,b,c:Point].  a_b_c supposing a-b-c
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-between: a-b-c, 
eu-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
prop: ℙ
Lemmas referenced : 
eu-between-eq-def, 
and_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-between_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    a\_b\_c  supposing  a-b-c
Date html generated:
2016_05_18-AM-06_33_54
Last ObjectModification:
2015_12_28-AM-09_27_50
Theory : euclidean!geometry
Home
Index