Nuprl Lemma : eu-inner-pasch-property

e:EuclideanPlane
  ∀[a,b:Point]. ∀[c:{c:Point| ¬Colinear(a;b;c)} ]. ∀[p:{p:Point| a-p-c} ]. ∀[q:{q:Point| b_q_c} ].
    (p-eu-inner-pasch(e;a;b;c;p;q)-b ∧ q-eu-inner-pasch(e;a;b;c;p;q)-a)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-inner-pasch: eu-inner-pasch(e;a;b;c;p;q) eu-between-eq: a_b_c eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-point: Point uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B euclidean-plane: EuclideanPlane member: t ∈ T euclidean-axioms: euclidean-axioms(e) sq_stable: SqStable(P) implies:  Q let: let squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  euclidean-plane_wf eu-colinear_wf not_wf eu-between_wf eu-between-eq_wf eu-point_wf set_wf eu-inner-pasch_wf sq_stable__eu-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid dependent_functionElimination productElimination hypothesisEquality isectElimination hypothesis independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation because_Cache lambdaEquality

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  \mneg{}Colinear(a;b;c)\}  ].  \mforall{}[p:\{p:Point|  a-p-c\}  ].  \mforall{}[q:\{q:Point|  b\_q\_c\}  ].
        (p-eu-inner-pasch(e;a;b;c;p;q)-b  \mwedge{}  q-eu-inner-pasch(e;a;b;c;p;q)-a)



Date html generated: 2016_05_18-AM-06_33_41
Last ObjectModification: 2016_01_16-PM-10_31_48

Theory : euclidean!geometry


Home Index