Nuprl Lemma : eu-inner-pasch-property
∀e:EuclideanPlane
  ∀[a,b:Point]. ∀[c:{c:Point| ¬Colinear(a;b;c)} ]. ∀[p:{p:Point| a-p-c} ]. ∀[q:{q:Point| b_q_c} ].
    (p-eu-inner-pasch(e;a;b;c;p;q)-b ∧ q-eu-inner-pasch(e;a;b;c;p;q)-a)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-inner-pasch: eu-inner-pasch(e;a;b;c;p;q)
, 
eu-between-eq: a_b_c
, 
eu-colinear: Colinear(a;b;c)
, 
eu-between: a-b-c
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
euclidean-axioms: euclidean-axioms(e)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
let: let, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
euclidean-plane_wf, 
eu-colinear_wf, 
not_wf, 
eu-between_wf, 
eu-between-eq_wf, 
eu-point_wf, 
set_wf, 
eu-inner-pasch_wf, 
sq_stable__eu-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
dependent_functionElimination, 
productElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
because_Cache, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  \mneg{}Colinear(a;b;c)\}  ].  \mforall{}[p:\{p:Point|  a-p-c\}  ].  \mforall{}[q:\{q:Point|  b\_q\_c\}  ].
        (p-eu-inner-pasch(e;a;b;c;p;q)-b  \mwedge{}  q-eu-inner-pasch(e;a;b;c;p;q)-a)
Date html generated:
2016_05_18-AM-06_33_41
Last ObjectModification:
2016_01_16-PM-10_31_48
Theory : euclidean!geometry
Home
Index