Nuprl Lemma : eu-between-eq-implies-colinear3
∀e:EuclideanPlane. ∀[a,b,c:Point].  (Colinear(a;b;c)) supposing (b_c_a and (¬(a = b ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-colinear: Colinear(a;b;c), 
eu-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
euclidean-plane: EuclideanPlane, 
stable: Stable{P}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
cand: A c∧ B
Lemmas referenced : 
eu-point_wf, 
stable__colinear, 
eu-between-eq-def, 
eu-colinear-def, 
not_wf, 
equal_wf, 
eu-between_wf, 
eu-colinear_wf, 
eu-between-eq_wf, 
euclidean-plane_wf, 
eu-between-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
addLevel, 
impliesFunctionality, 
productEquality, 
because_Cache, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality, 
independent_pairFormation, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    (Colinear(a;b;c))  supposing  (b\_c\_a  and  (\mneg{}(a  =  b)))
Date html generated:
2016_05_18-AM-06_33_57
Last ObjectModification:
2015_12_28-AM-09_28_36
Theory : euclidean!geometry
Home
Index