Nuprl Lemma : eu-colinear-equidistant
∀e:EuclideanPlane. ∀[a,b,c,p,q:Point].  (cp=cq) supposing (ap=aq and bp=bq and Colinear(a;b;c))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-colinear: Colinear(a;b;c)
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
eu-colinear-five-segment, 
sq_stable__eu-congruent, 
eu-congruent-refl, 
euclidean-plane_wf, 
eu-point_wf, 
eu-colinear_wf, 
eu-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,p,q:Point].    (cp=cq)  supposing  (ap=aq  and  bp=bq  and  Colinear(a;b;c))
Date html generated:
2016_05_18-AM-06_39_15
Last ObjectModification:
2016_01_16-PM-10_29_09
Theory : euclidean!geometry
Home
Index