Nuprl Lemma : eu-congruence-identity3

[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (a b ∈ Point) supposing (cd=ab and (c d ∈ Point))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: euclidean-plane: EuclideanPlane all: x:A. B[x]
Lemmas referenced :  eu-congruence-identity2 eu-congruent_wf equal_wf eu-point_wf euclidean-plane_wf eu-congruent-symmetry
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination setElimination rename sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (a  =  b)  supposing  (cd=ab  and  (c  =  d))



Date html generated: 2016_05_18-AM-06_35_12
Last ObjectModification: 2015_12_28-AM-09_26_11

Theory : euclidean!geometry


Home Index