Nuprl Lemma : eu-congruence-identity3
∀[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (a = b ∈ Point) supposing (cd=ab and (c = d ∈ Point))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
Lemmas referenced : 
eu-congruence-identity2, 
eu-congruent_wf, 
equal_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-congruent-symmetry
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (a  =  b)  supposing  (cd=ab  and  (c  =  d))
Date html generated:
2016_05_18-AM-06_35_12
Last ObjectModification:
2015_12_28-AM-09_26_11
Theory : euclidean!geometry
Home
Index