Nuprl Lemma : eu-congruence-identity2
∀[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (a = b ∈ Point) supposing (ab=cd and (c = d ∈ Point))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu-congruent_wf, 
eu-congruence-identity, 
equal_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
equalitySymmetry, 
thin, 
hyp_replacement, 
Error :applyLambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (a  =  b)  supposing  (ab=cd  and  (c  =  d))
Date html generated:
2016_10_26-AM-07_40_48
Last ObjectModification:
2016_07_12-AM-08_06_46
Theory : euclidean!geometry
Home
Index