Nuprl Lemma : eu-add-length-assoc

[e:EuclideanPlane]. ∀[x,y,z:{p:Point| O_X_p} ].  (x z ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-add-length: q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] eu-add-length: q and: P ∧ Q not: ¬A implies:  Q uimplies: supposing a false: False cand: c∧ B uiff: uiff(P;Q) squash: T true: True sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__eu-between-eq eu-between-eq-exchange4 eu-construction-unicity eu-between-eq-exchange3 eu-between-eq-inner-trans eu-between-eq-symmetry eu-add-length-between euclidean-plane_wf true_wf squash_wf eu-add-length_wf eu-congruent-iff-length eu-congruent_wf and_wf eu-extend_wf not_wf eu-extend-property equal_wf eu-between-eq-same2 eu-not-colinear-OXY eu-point_wf set_wf eu-X_wf eu-O_wf eu-between-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination hypothesis sqequalRule lambdaEquality isect_memberEquality axiomEquality because_Cache productElimination lambdaFormation equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination voidElimination equalityEquality applyEquality imageElimination setEquality natural_numberEquality imageMemberEquality baseClosed independent_pairFormation

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y,z:\{p:Point|  O\_X\_p\}  ].    (x  +  y  +  z  =  x  +  y  +  z)



Date html generated: 2016_05_18-AM-06_38_28
Last ObjectModification: 2016_01_16-PM-10_29_49

Theory : euclidean!geometry


Home Index