Nuprl Lemma : eu-out_wf
∀[e:EuclideanPlane]. ∀[p,a,b:Point]. (out(p ab) ∈ ℙ)
Proof
Definitions occuring in Statement :
eu-out: out(p ab)
,
euclidean-plane: EuclideanPlane
,
eu-point: Point
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
eu-out: out(p ab)
,
euclidean-plane: EuclideanPlane
Lemmas referenced :
and_wf,
not_wf,
equal_wf,
eu-point_wf,
eu-between-eq_wf,
euclidean-plane_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[e:EuclideanPlane]. \mforall{}[p,a,b:Point]. (out(p ab) \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-06_42_00
Last ObjectModification:
2015_12_28-AM-09_22_44
Theory : euclidean!geometry
Home
Index