Nuprl Lemma : eu-out_wf
∀[e:EuclideanPlane]. ∀[p,a,b:Point].  (out(p ab) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
and_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-between-eq_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,a,b:Point].    (out(p  ab)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_42_00
Last ObjectModification:
2015_12_28-AM-09_22_44
Theory : euclidean!geometry
Home
Index