Step
*
1
of Lemma
eu-cong3-to-conga
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. E : Point
7. f : Point
8. a' : Point
9. c' : Point
10. d' : Point
11. f' : Point
12. out(b a'a)
13. out(b c'c)
14. out(E d'd)
15. out(E f'f)
16. Cong3(a'bc',d'Ef')
⊢ abc = dEf
BY
{ Unfold `eu-cong-angle` 0 }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. E : Point
7. f : Point
8. a' : Point
9. c' : Point
10. d' : Point
11. f' : Point
12. out(b a'a)
13. out(b c'c)
14. out(E d'd)
15. out(E f'f)
16. Cong3(a'bc',d'Ef')
⊢ (¬(a = b ∈ Point))
∧ (¬(c = b ∈ Point))
∧ (¬(d = E ∈ Point))
∧ (¬(f = E ∈ Point))
∧ (∃a',c',x',z':Point. (b_a_a' ∧ b_c_c' ∧ E_d_x' ∧ E_f_z' ∧ ba'=Ex' ∧ bc'=Ez' ∧ a'c'=x'z'))
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  d  :  Point
6.  E  :  Point
7.  f  :  Point
8.  a'  :  Point
9.  c'  :  Point
10.  d'  :  Point
11.  f'  :  Point
12.  out(b  a'a)
13.  out(b  c'c)
14.  out(E  d'd)
15.  out(E  f'f)
16.  Cong3(a'bc',d'Ef')
\mvdash{}  abc  =  dEf
By
Latex:
Unfold  `eu-cong-angle`  0
Home
Index