Nuprl Lemma : eu-cong3-to-conga
∀e:EuclideanPlane. ∀a,b,c,d,E,f:Point.
  ((∃a',c',d',f':Point. (out(b a'a) ∧ out(b c'c) ∧ out(E d'd) ∧ out(E f'f) ∧ Cong3(a'bc',d'Ef'))) 
⇒ abc = dEf)
Proof
Definitions occuring in Statement : 
eu-out: out(p ab)
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
eu-cong-angle: abc = xyz
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
eu-cong-angle: abc = xyz
, 
not: ¬A
, 
eu-out: out(p ab)
, 
cand: A c∧ B
, 
false: False
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d')
, 
stable: Stable{P}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
eu-colinear-set: eu-colinear-set(e;L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
exists_wf, 
eu-point_wf, 
eu-out_wf, 
eu-cong-tri_wf, 
euclidean-plane_wf, 
equal_wf, 
eu-extend-exists, 
not_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
eu-out-refl, 
eu-cong3-to-conga-aux, 
eu-congruent-iff-length, 
eu-length-flip, 
eu-fsc-ap, 
stable__colinear, 
eu-colinear_wf, 
eu-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
eu-colinear-is-colinear-set, 
eu-between-eq-implies-colinear, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
eu-between-eq-exchange3, 
eu-between-eq-symmetry, 
eu-between-eq-exchange4
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
independent_pairFormation, 
independent_functionElimination, 
equalitySymmetry, 
voidElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,E,f:Point.
    ((\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(E  d'd)  \mwedge{}  out(E  f'f)  \mwedge{}  Cong3(a'bc',d'Ef')))
    {}\mRightarrow{}  abc  =  dEf)
Date html generated:
2016_10_26-AM-07_45_33
Last ObjectModification:
2016_08_04-PM-06_59_09
Theory : euclidean!geometry
Home
Index