Nuprl Lemma : eu-cong3-to-conga

e:EuclideanPlane. ∀a,b,c,d,E,f:Point.
  ((∃a',c',d',f':Point. (out(b a'a) ∧ out(b c'c) ∧ out(E d'd) ∧ out(E f'f) ∧ Cong3(a'bc',d'Ef')))  abc dEf)


Proof




Definitions occuring in Statement :  eu-out: out(p ab) eu-cong-tri: Cong3(abc,a'b'c') eu-cong-angle: abc xyz euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] eu-cong-angle: abc xyz not: ¬A eu-out: out(p ab) cand: c∧ B false: False eu-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q) uimplies: supposing a eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d') stable: Stable{P} iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q guard: {T} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  exists_wf eu-point_wf eu-out_wf eu-cong-tri_wf euclidean-plane_wf equal_wf eu-extend-exists not_wf eu-between-eq_wf eu-congruent_wf eu-out-refl eu-cong3-to-conga-aux eu-congruent-iff-length eu-length-flip eu-fsc-ap stable__colinear eu-colinear_wf eu-colinear-append cons_wf nil_wf cons_member l_member_wf eu-colinear-is-colinear-set eu-between-eq-implies-colinear list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf eu-between-eq-exchange3 eu-between-eq-symmetry eu-between-eq-exchange4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination setElimination rename because_Cache hypothesis sqequalRule lambdaEquality productEquality hypothesisEquality independent_pairFormation independent_functionElimination equalitySymmetry voidElimination dependent_functionElimination dependent_set_memberEquality dependent_pairFormation independent_isectElimination equalityTransitivity inlFormation inrFormation isect_memberEquality voidEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,E,f:Point.
    ((\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(E  d'd)  \mwedge{}  out(E  f'f)  \mwedge{}  Cong3(a'bc',d'Ef')))
    {}\mRightarrow{}  abc  =  dEf)



Date html generated: 2016_10_26-AM-07_45_33
Last ObjectModification: 2016_08_04-PM-06_59_09

Theory : euclidean!geometry


Home Index