Nuprl Lemma : eu-colinear-is-colinear-set
∀e:EuclideanPlane. ∀A,B,C:Point.  (Colinear(A;B;C) 
⇒ eu-colinear-set(e;[A; B; C]))
Proof
Definitions occuring in Statement : 
eu-colinear-set: eu-colinear-set(e;L)
, 
euclidean-plane: EuclideanPlane
, 
eu-colinear: Colinear(a;b;c)
, 
eu-point: Point
, 
cons: [a / b]
, 
nil: []
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
eu-colinear-set: eu-colinear-set(e;L)
, 
l_all: (∀x∈L.P[x])
, 
member: t ∈ T
, 
top: Top
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
select: L[n]
, 
cons: [a / b]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
, 
not: ¬A
, 
false: False
, 
subtract: n - m
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
lelt: i ≤ j < k
, 
stable: Stable{P}
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
l_all_iff, 
cons_wf, 
eu-point_wf, 
nil_wf, 
l_member_wf, 
l_all_wf2, 
not_wf, 
equal_wf, 
eu-colinear_wf, 
eu-colinear-def, 
member_wf, 
eu-between_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
eu-colinear-swap, 
eu-colinear-cycle, 
eu-colinear-permute, 
int_seg_wf, 
length_wf, 
euclidean-plane_wf, 
stable__colinear, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
functionEquality, 
setEquality, 
productElimination, 
independent_pairFormation, 
productEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
hyp_replacement, 
Error :applyLambdaEquality, 
hypothesis_subsumption, 
addEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C:Point.    (Colinear(A;B;C)  {}\mRightarrow{}  eu-colinear-set(e;[A;  B;  C]))
Date html generated:
2016_10_26-AM-07_43_33
Last ObjectModification:
2016_07_12-AM-08_11_07
Theory : euclidean!geometry
Home
Index