Nuprl Lemma : eu-colinear-is-colinear-set

e:EuclideanPlane. ∀A,B,C:Point.  (Colinear(A;B;C)  eu-colinear-set(e;[A; B; C]))


Proof




Definitions occuring in Statement :  eu-colinear-set: eu-colinear-set(e;L) euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point cons: [a b] nil: [] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) member: t ∈ T top: Top int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} select: L[n] cons: [a b] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B nat: not: ¬A false: False subtract: m ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B less_than': less_than'(a;b) lelt: i ≤ j < k stable: Stable{P}
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties l_all_iff cons_wf eu-point_wf nil_wf l_member_wf l_all_wf2 not_wf equal_wf eu-colinear_wf eu-colinear-def member_wf eu-between_wf nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_subtype false_wf int_seg_cases eu-colinear-swap eu-colinear-cycle eu-colinear-permute int_seg_wf length_wf euclidean-plane_wf stable__colinear or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution sqequalRule cut introduction extract_by_obid dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename hypothesisEquality natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry lambdaEquality functionEquality setEquality productElimination independent_pairFormation productEquality dependent_pairFormation int_eqEquality computeAll hyp_replacement Error :applyLambdaEquality,  hypothesis_subsumption addEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C:Point.    (Colinear(A;B;C)  {}\mRightarrow{}  eu-colinear-set(e;[A;  B;  C]))



Date html generated: 2016_10_26-AM-07_43_33
Last ObjectModification: 2016_07_12-AM-08_11_07

Theory : euclidean!geometry


Home Index