Nuprl Lemma : eu-colinear-is-colinear-set
∀e:EuclideanPlane. ∀A,B,C:Point. (Colinear(A;B;C)
⇒ eu-colinear-set(e;[A; B; C]))
Proof
Definitions occuring in Statement :
eu-colinear-set: eu-colinear-set(e;L)
,
euclidean-plane: EuclideanPlane
,
eu-colinear: Colinear(a;b;c)
,
eu-point: Point
,
cons: [a / b]
,
nil: []
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
eu-colinear-set: eu-colinear-set(e;L)
,
l_all: (∀x∈L.P[x])
,
member: t ∈ T
,
top: Top
,
int_seg: {i..j-}
,
decidable: Dec(P)
,
or: P ∨ Q
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
select: L[n]
,
cons: [a / b]
,
euclidean-plane: EuclideanPlane
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
l_member: (x ∈ l)
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
nat: ℕ
,
not: ¬A
,
false: False
,
subtract: n - m
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
lelt: i ≤ j < k
,
stable: Stable{P}
Lemmas referenced :
length_of_cons_lemma,
length_of_nil_lemma,
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
int_seg_properties,
l_all_iff,
cons_wf,
eu-point_wf,
nil_wf,
l_member_wf,
l_all_wf2,
not_wf,
equal_wf,
eu-colinear_wf,
eu-colinear-def,
member_wf,
eu-between_wf,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformless_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
int_seg_subtype,
false_wf,
int_seg_cases,
eu-colinear-swap,
eu-colinear-cycle,
eu-colinear-permute,
int_seg_wf,
length_wf,
euclidean-plane_wf,
stable__colinear,
or_wf,
minimal-double-negation-hyp-elim,
minimal-not-not-excluded-middle
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalHypSubstitution,
sqequalRule,
cut,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
setElimination,
rename,
hypothesisEquality,
natural_numberEquality,
unionElimination,
instantiate,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
because_Cache,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
functionEquality,
setEquality,
productElimination,
independent_pairFormation,
productEquality,
dependent_pairFormation,
int_eqEquality,
computeAll,
hyp_replacement,
Error :applyLambdaEquality,
hypothesis_subsumption,
addEquality
Latex:
\mforall{}e:EuclideanPlane. \mforall{}A,B,C:Point. (Colinear(A;B;C) {}\mRightarrow{} eu-colinear-set(e;[A; B; C]))
Date html generated:
2016_10_26-AM-07_43_33
Last ObjectModification:
2016_07_12-AM-08_11_07
Theory : euclidean!geometry
Home
Index