Nuprl Lemma : eu-colinear-cycle

e:EuclideanPlane. ∀a,b,c:Point.  ((¬(c a ∈ Point))  Colinear(a;b;c)  Colinear(c;a;b))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  prop: false: False cand: c∧ B not: ¬A rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] euclidean-plane: EuclideanPlane member: t ∈ T implies:  Q all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  eu-between-sym eu-colinear-def equal_wf eu-point_wf not_wf eu-between_wf eu-colinear_wf euclidean-plane_wf
Rules used in proof :  because_Cache productEquality voidElimination equalitySymmetry introduction independent_pairFormation independent_functionElimination productElimination hypothesis isectElimination hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((\mneg{}(c  =  a))  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  Colinear(c;a;b))



Date html generated: 2016_05_18-AM-06_35_54
Last ObjectModification: 2016_01_01-PM-04_15_18

Theory : euclidean!geometry


Home Index