Nuprl Lemma : eu-colinear-append

e:EuclideanPlane. ∀L1,L2:Point List.
  ((∃A,B:Point. ((¬(A B ∈ Point)) ∧ ((A ∈ L1) ∧ (A ∈ L2)) ∧ (B ∈ L1) ∧ (B ∈ L2)))
   eu-colinear-set(e;L1)
   eu-colinear-set(e;L2)
   eu-colinear-set(e;L1 L2))


Proof




Definitions occuring in Statement :  eu-colinear-set: eu-colinear-set(e;L) euclidean-plane: EuclideanPlane eu-point: Point l_member: (x ∈ l) append: as bs list: List all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q eu-colinear-set: eu-colinear-set(e;L) member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B guard: {T} stable: Stable{P} uimplies: supposing a not: ¬A or: P ∨ Q false: False
Lemmas referenced :  eu-colinear-set_wf exists_wf eu-point_wf not_wf equal_wf l_member_wf list_wf euclidean-plane_wf l_all_iff l_all_wf2 eu-colinear_wf all_wf l_all_append append_wf stable__colinear false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle eu-colinear-transitivity eu-colinear-cycle eu-colinear-swap eu-colinear-def member_wf eu-between_wf eu-colinear-permute
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename because_Cache sqequalRule lambdaEquality productEquality addLevel dependent_functionElimination functionEquality setEquality independent_functionElimination allFunctionality levelHypothesis promote_hyp independent_pairFormation impliesFunctionality allLevelFunctionality impliesLevelFunctionality independent_isectElimination unionElimination voidElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  equalityTransitivity

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}L1,L2:Point  List.
    ((\mexists{}A,B:Point.  ((\mneg{}(A  =  B))  \mwedge{}  ((A  \mmember{}  L1)  \mwedge{}  (A  \mmember{}  L2))  \mwedge{}  (B  \mmember{}  L1)  \mwedge{}  (B  \mmember{}  L2)))
    {}\mRightarrow{}  eu-colinear-set(e;L1)
    {}\mRightarrow{}  eu-colinear-set(e;L2)
    {}\mRightarrow{}  eu-colinear-set(e;L1  @  L2))



Date html generated: 2016_10_26-AM-07_44_03
Last ObjectModification: 2016_07_12-AM-08_11_29

Theory : euclidean!geometry


Home Index