Nuprl Lemma : eu-colinear-transitivity

e:EuclideanPlane
  ∀[A,C,B,D:Point].  (Colinear(A;B;C)  Colinear(B;C;D)  {((¬(A C ∈ Point))  Colinear(A;C;D)) ∧ Colinear(A;B;D)})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point uall: [x:A]. B[x] guard: {T} all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T euclidean-plane: EuclideanPlane iff: ⇐⇒ Q and: P ∧ Q guard: {T} sq_stable: SqStable(P) not: ¬A false: False prop: uimplies: supposing a squash: T
Lemmas referenced :  eu-colinear-def sq_stable__colinear eu-colinear-cases eu-colinear_wf stable__colinear not_wf equal_wf eu-point_wf eu-between-eq-implies-colinear2 eu-between-implies-between-eq eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4 eu-between-eq-outer-trans eu-between_wf eu-between-eq-implies-colinear eu-colinear-permute eu-colinear-swap not-eu-between-same not-eu-between-same2 euclidean-plane_wf eu-between-eq-trivial-right eu-colinear-between eu-colinear-same-side eu-colinear-same-side2 eu-between-eq_wf eu-between-same2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis isectElimination hypothesisEquality productElimination independent_functionElimination independent_pairFormation equalitySymmetry voidElimination productEquality equalityEquality promote_hyp hyp_replacement Error :applyLambdaEquality,  sqequalRule independent_isectElimination imageMemberEquality baseClosed imageElimination equalityTransitivity universeEquality

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,C,B,D:Point].
        (Colinear(A;B;C)  {}\mRightarrow{}  Colinear(B;C;D)  {}\mRightarrow{}  \{((\mneg{}(A  =  C))  {}\mRightarrow{}  Colinear(A;C;D))  \mwedge{}  Colinear(A;B;D)\})



Date html generated: 2016_10_26-AM-07_43_27
Last ObjectModification: 2016_07_12-AM-08_14_11

Theory : euclidean!geometry


Home Index