Nuprl Lemma : not-eu-between-same

e:EuclideanPlane. ∀[a,b:Point].  False supposing a-b-b


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between: a-b-c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] false: False
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  eu-between-same2 eu-between-trans2 euclidean-plane_wf eu-point_wf eu-between_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut hypothesis sqequalRule sqequalHypSubstitution because_Cache lemma_by_obid isectElimination thin setElimination rename hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry voidElimination dependent_functionElimination independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    False  supposing  a-b-b



Date html generated: 2016_05_18-AM-06_34_17
Last ObjectModification: 2016_01_05-PM-00_48_39

Theory : euclidean!geometry


Home Index