Nuprl Lemma : not-eu-between-same
∀e:EuclideanPlane. ∀[a,b:Point].  False supposing a-b-b
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between: a-b-c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu-between-same2, 
eu-between-trans2, 
euclidean-plane_wf, 
eu-point_wf, 
eu-between_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    False  supposing  a-b-b
Date html generated:
2016_05_18-AM-06_34_17
Last ObjectModification:
2016_01_05-PM-00_48_39
Theory : euclidean!geometry
Home
Index