Nuprl Lemma : not-eu-between-same
∀e:EuclideanPlane. ∀[a,b:Point]. False supposing a-b-b
Proof
Definitions occuring in Statement :
euclidean-plane: EuclideanPlane
,
eu-between: a-b-c
,
eu-point: Point
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
false: False
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
false: False
,
prop: ℙ
,
euclidean-plane: EuclideanPlane
Lemmas referenced :
eu-between-same2,
eu-between-trans2,
euclidean-plane_wf,
eu-point_wf,
eu-between_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
introduction,
cut,
hypothesis,
sqequalRule,
sqequalHypSubstitution,
because_Cache,
lemma_by_obid,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
voidElimination,
dependent_functionElimination,
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane. \mforall{}[a,b:Point]. False supposing a-b-b
Date html generated:
2016_05_18-AM-06_34_17
Last ObjectModification:
2016_01_05-PM-00_48_39
Theory : euclidean!geometry
Home
Index