Nuprl Lemma : eu-between-trans2

e:EuclideanPlane. ∀[a,b,c,d:Point].  (a-b-c) supposing (d-b-c and d-a-b)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between: a-b-c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  eu-between-trans eu-between-sym eu-between_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a-b-c)  supposing  (d-b-c  and  d-a-b)



Date html generated: 2016_05_18-AM-06_33_52
Last ObjectModification: 2015_12_28-AM-09_27_46

Theory : euclidean!geometry


Home Index