Nuprl Lemma : not-eu-between-same2
∀e:EuclideanPlane. ∀[a,b:Point].  False supposing a-a-b
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between: a-b-c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
euclidean-plane_wf, 
eu-point_wf, 
eu-between_wf, 
not-eu-between-same, 
eu-between-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
voidElimination, 
sqequalRule, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    False  supposing  a-a-b
Date html generated:
2016_05_18-AM-06_34_19
Last ObjectModification:
2016_01_05-PM-00_57_02
Theory : euclidean!geometry
Home
Index