Nuprl Lemma : eu-colinear-set_wf
∀[e:EuclideanPlane]. ∀[L:Point List].  (eu-colinear-set(e;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-colinear-set: eu-colinear-set(e;L)
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
euclidean-plane: EuclideanPlane
, 
eu-colinear-set: eu-colinear-set(e;L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
l_all_wf2, 
eu-point_wf, 
l_member_wf, 
not_wf, 
equal_wf, 
eu-colinear_wf, 
list_wf, 
euclidean-plane_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
setEquality, 
functionEquality, 
because_Cache, 
lambdaFormation, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[L:Point  List].    (eu-colinear-set(e;L)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_40_18
Last ObjectModification:
2016_01_03-PM-01_52_08
Theory : euclidean!geometry
Home
Index