Nuprl Lemma : eu-out-refl

e:EuclideanPlane. ∀a,b,c:Point.  (out(a bc)  out(a cb))


Proof




Definitions occuring in Statement :  eu-out: out(p ab) euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q eu-out: out(p ab) and: P ∧ Q cand: c∧ B not: ¬A member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane
Lemmas referenced :  and_wf not_wf eu-between-eq_wf eu-out_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis independent_pairFormation independent_functionElimination lemma_by_obid isectElimination setElimination rename hypothesisEquality because_Cache

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(a  bc)  {}\mRightarrow{}  out(a  cb))



Date html generated: 2016_05_18-AM-06_42_03
Last ObjectModification: 2015_12_28-AM-09_23_32

Theory : euclidean!geometry


Home Index