Nuprl Lemma : eu-out-refl
∀e:EuclideanPlane. ∀a,b,c:Point.  (out(a bc) ⇒ out(a cb))
Proof
Definitions occuring in Statement : 
eu-out: out(p ab), 
euclidean-plane: EuclideanPlane, 
eu-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
eu-out: out(p ab), 
and: P ∧ Q, 
cand: A c∧ B, 
not: ¬A, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
and_wf, 
not_wf, 
eu-between-eq_wf, 
eu-out_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
independent_pairFormation, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(a  bc)  {}\mRightarrow{}  out(a  cb))
Date html generated:
2016_05_18-AM-06_42_03
Last ObjectModification:
2015_12_28-AM-09_23_32
Theory : euclidean!geometry
Home
Index