Nuprl Lemma : eu-cong-tri_wf

[e:EuclideanPlane]. ∀[a,b,c,a',b',c':Point].  (Cong3(abc,a'b'c') ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-cong-tri: Cong3(abc,a'b'c') euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-cong-tri: Cong3(abc,a'b'c') euclidean-plane: EuclideanPlane
Lemmas referenced :  and_wf eu-congruent_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,a',b',c':Point].    (Cong3(abc,a'b'c')  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_41_55
Last ObjectModification: 2015_12_28-AM-09_22_50

Theory : euclidean!geometry


Home Index