Nuprl Lemma : eu-cong-tri_wf
∀[e:EuclideanPlane]. ∀[a,b,c,a',b',c':Point].  (Cong3(abc,a'b'c') ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-cong-tri: Cong3(abc,a'b'c')
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
and_wf, 
eu-congruent_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,a',b',c':Point].    (Cong3(abc,a'b'c')  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_41_55
Last ObjectModification:
2015_12_28-AM-09_22_50
Theory : euclidean!geometry
Home
Index