Step * 1 1 1 1 of Lemma eu-sum-eq-x


1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
7. |ab| ≤ X
8. |ab| |aa| ∈ {p:Point| O_X_p}  supposing |ab| ≤ |aa|
9. |ab| ≤ |aa| supposing |ab| |aa| ∈ {p:Point| O_X_p} 
⊢ |ab| ∈ {p:Point| O_X_p} 
BY
Assert ⌜|aa| ∈ {p:Point| O_X_p} ⌝⋅ }

1
.....assertion..... 
1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
7. |ab| ≤ X
8. |ab| |aa| ∈ {p:Point| O_X_p}  supposing |ab| ≤ |aa|
9. |ab| ≤ |aa| supposing |ab| |aa| ∈ {p:Point| O_X_p} 
⊢ |aa| ∈ {p:Point| O_X_p} 

2
1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
7. |ab| ≤ X
8. |ab| |aa| ∈ {p:Point| O_X_p}  supposing |ab| ≤ |aa|
9. |ab| ≤ |aa| supposing |ab| |aa| ∈ {p:Point| O_X_p} 
10. |aa| ∈ {p:Point| O_X_p} 
⊢ |ab| ∈ {p:Point| O_X_p} 


Latex:


Latex:

1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  d  :  Point@i
6.  X  =  |ab|  +  |cd|@i
7.  |ab|  \mleq{}  X
8.  |ab|  =  |aa|  supposing  |ab|  \mleq{}  |aa|
9.  |ab|  \mleq{}  |aa|  supposing  |ab|  =  |aa|
\mvdash{}  X  =  |ab|


By


Latex:
Assert  \mkleeneopen{}X  =  |aa|\mkleeneclose{}\mcdot{}




Home Index