Nuprl Lemma : p8eu

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  Cong3(abc,xyz)  (abc xyz ∧ bac yxz ∧ bca yzx) supposing Triangle(a;b;c) ∧ Triangle(x;y;z)


Proof




Definitions occuring in Statement :  eu-cong-tri: Cong3(abc,a'b'c') eu-cong-angle: abc xyz eu-tri: Triangle(a;b;c) euclidean-plane: EuclideanPlane eu-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uiff: uiff(P;Q) exists: x:A. B[x] prop: eu-cong-angle: abc xyz eu-cong-tri: Cong3(abc,a'b'c') cand: c∧ B euclidean-plane: EuclideanPlane uall: [x:A]. B[x] false: False implies:  Q not: ¬A eu-tri: Triangle(a;b;c) and: P ∧ Q member: t ∈ T uimplies: supposing a all: x:A. B[x]
Rules used in proof :  equalityTransitivity independent_isectElimination dependent_pairFormation productEquality because_Cache equalitySymmetry independent_functionElimination independent_pairFormation hypothesis rename setElimination isectElimination extract_by_obid equalityEquality voidElimination hypothesisEquality dependent_functionElimination lambdaEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    Cong3(abc,xyz)  {}\mRightarrow{}  (abc  =  xyz  \mwedge{}  bac  =  yxz  \mwedge{}  bca  =  yzx)  supposing  Triangle(a;b;c)  \mwedge{}  Triangle(x;y;z)



Date html generated: 2016_07_08-PM-05_54_27
Last ObjectModification: 2016_07_05-PM-03_04_37

Theory : euclidean!geometry


Home Index