Nuprl Lemma : p8eu
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  Cong3(abc,xyz) 
⇒ (abc = xyz ∧ bac = yxz ∧ bca = yzx) supposing Triangle(a;b;c) ∧ Triangle(x;y;z)
Proof
Definitions occuring in Statement : 
eu-cong-tri: Cong3(abc,a'b'c')
, 
eu-cong-angle: abc = xyz
, 
eu-tri: Triangle(a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
eu-cong-angle: abc = xyz
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
cand: A c∧ B
, 
euclidean-plane: EuclideanPlane
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
eu-tri: Triangle(a;b;c)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Rules used in proof : 
equalityTransitivity, 
independent_isectElimination, 
dependent_pairFormation, 
productEquality, 
because_Cache, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
equalityEquality, 
voidElimination, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    Cong3(abc,xyz)  {}\mRightarrow{}  (abc  =  xyz  \mwedge{}  bac  =  yxz  \mwedge{}  bca  =  yzx)  supposing  Triangle(a;b;c)  \mwedge{}  Triangle(x;y;z)
Date html generated:
2016_07_08-PM-05_54_27
Last ObjectModification:
2016_07_05-PM-03_04_37
Theory : euclidean!geometry
Home
Index