Nuprl Lemma : Euclid-Prop10-ext
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃d:Point [(a-d-b ∧ ad ≅ db)])
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
Euclid-midpoint, 
Euclid-Prop10, 
member: t ∈ T
Lemmas referenced : 
Euclid-Prop10, 
Euclid-midpoint
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}d:Point  [(a-d-b  \mwedge{}  ad  \mcong{}  db)])
Date html generated:
2018_05_22-PM-00_08_10
Last ObjectModification:
2018_05_21-AM-01_16_47
Theory : euclidean!plane!geometry
Home
Index