Nuprl Lemma : Euclid-Prop10-ext

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃d:Point [(a-d-b ∧ ad ≅ db)])


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  Euclid-midpoint Euclid-Prop10 member: t ∈ T
Lemmas referenced :  Euclid-Prop10 Euclid-midpoint
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}d:Point  [(a-d-b  \mwedge{}  ad  \mcong{}  db)])



Date html generated: 2018_05_22-PM-00_08_10
Last ObjectModification: 2018_05_21-AM-01_16_47

Theory : euclidean!plane!geometry


Home Index