Step
*
1
1
of Lemma
Euclid-Prop21
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc ∧ d leftof bc ∧ d leftof ca ∧ d leftof ab
7. a leftof bd
8. c leftof db
⊢ {|cd| + |bd| < |ba| + |ac| ∧ bac < bdc}
BY
{ ((InstLemma `use-plane-sep_strict` [⌜g⌝;⌜b⌝;⌜d⌝;⌜a⌝;⌜c⌝]⋅ THENA Auto) THEN D -1) }
1
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc ∧ d leftof bc ∧ d leftof ca ∧ d leftof ab
7. a leftof bd
8. c leftof db
9. x : Point
10. Colinear(b;d;x) ∧ a-x-c
⊢ {|cd| + |bd| < |ba| + |ac| ∧ bac < bdc}
Latex:
Latex:
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc \mwedge{} d leftof bc \mwedge{} d leftof ca \mwedge{} d leftof ab
7. a leftof bd
8. c leftof db
\mvdash{} \{|cd| + |bd| < |ba| + |ac| \mwedge{} bac < bdc\}
By
Latex:
((InstLemma `use-plane-sep\_strict` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THENA Auto) THEN D -1)
Home
Index