Nuprl Lemma : LP-sep-or2

g:ProjectivePlaneStructure. ∀l:Line. ∀p,q:Point.  (p ≠  (q ≠ l ∨ q ≠ p))


Proof




Definitions occuring in Statement :  projective-plane-structure: ProjectivePlaneStructure pgeo-psep: a ≠ b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] pgeo-lpsep: a ≠ b guard: {T}
Lemmas referenced :  projective-plane-structure_wf pgeo-line_wf pgeo-point_wf projective-plane-structure_subtype pgeo-plsep_wf LP-sep-or
Rules used in proof :  because_Cache sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l:Line.  \mforall{}p,q:Point.    (p  \mneq{}  l  {}\mRightarrow{}  (q  \mneq{}  l  \mvee{}  q  \mneq{}  p))



Date html generated: 2018_05_22-PM-00_30_00
Last ObjectModification: 2017_11_15-PM-01_32_42

Theory : euclidean!plane!geometry


Home Index