Nuprl Lemma : LP-sep-or2
∀g:ProjectivePlaneStructure. ∀l:Line. ∀p,q:Point.  (p ≠ l 
⇒ (q ≠ l ∨ q ≠ p))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-psep: a ≠ b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
pgeo-lpsep: a ≠ b
, 
guard: {T}
Lemmas referenced : 
projective-plane-structure_wf, 
pgeo-line_wf, 
pgeo-point_wf, 
projective-plane-structure_subtype, 
pgeo-plsep_wf, 
LP-sep-or
Rules used in proof : 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l:Line.  \mforall{}p,q:Point.    (p  \mneq{}  l  {}\mRightarrow{}  (q  \mneq{}  l  \mvee{}  q  \mneq{}  p))
Date html generated:
2018_05_22-PM-00_30_00
Last ObjectModification:
2017_11_15-PM-01_32_42
Theory : euclidean!plane!geometry
Home
Index