Nuprl Lemma : pgeo-plsep_wf
∀[p:ProjGeomPrimitives]. ∀[a:Point]. ∀[b:Line].  (a ≠ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
pgeo-plsep: a ≠ b
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
pgeo-plsep: a ≠ b
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_self, 
pgeo-line_wf, 
pgeo-point_wf, 
pgeo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:ProjGeomPrimitives].  \mforall{}[a:Point].  \mforall{}[b:Line].    (a  \mneq{}  b  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_23_20
Last ObjectModification:
2017_10_31-PM-01_53_52
Theory : euclidean!plane!geometry
Home
Index