Nuprl Lemma : Post5_wf

e:EuclideanPlane. (Post5(e) ∈ ℙ)


Proof




Definitions occuring in Statement :  Post5: Post5(e) euclidean-plane: EuclideanPlane prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T Post5: Post5(e) prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a implies:  Q and: P ∧ Q
Lemmas referenced :  geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear_wf geo-left_wf hp-angle-sum_wf geo-lsep_wf geo-intersect-points_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache productEquality dependent_functionElimination universeIsType

Latex:
\mforall{}e:EuclideanPlane.  (Post5(e)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_37_12
Last ObjectModification: 2019_06_19-PM-02_30_31

Theory : euclidean!plane!geometry


Home Index