Nuprl Lemma : angle-sum_wf

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k:Point.  (abc xyz ≅a ijk ∈ ℙ)


Proof




Definitions occuring in Statement :  angle-sum: abc def ≅a xyz euclidean-plane: EuclideanPlane geo-point: Point prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T angle-sum: abc def ≅a xyz prop: exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q basic-geometry: BasicGeometry guard: {T} uimplies: supposing a
Lemmas referenced :  geo-point_wf geo-left_wf geo-cong-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis inhabitedIsType universeIsType instantiate independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k:Point.    (abc  +  xyz  \mcong{}\msuba{}  ijk  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_03_23
Last ObjectModification: 2019_06_10-PM-07_46_18

Theory : euclidean!plane!geometry


Home Index