Step * 1 1 1 1 of Lemma basic-axioms-imply_between2


1. EuclideanPlaneStructure
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e@0,f:Point.  (ab>cd  cd ≥ e@0f  ab>e@0f)
6. ∀a,b,c,d,e@0,f:Point.  (ab ≥ cd  cd>e@0f  ab>e@0f)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. Point
16. Point
17. Point
18. Point
19. a ≡ b
20. ¬ay
21. xy ≥ ay
22. xy ≥ xa
23. ∀a:Point. a ≡ a
24. ∀a,b:Point.  ab ≅ ba
25. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
26. ∀a,b:Point.  (a  a)
27. ∀a,b,x,y:Point.  (aa ≥ ab  leftof xy  leftof xy)
28. ∀a,b,c,d,e1,f:Point.  (ab ≥ cd  cd ≥ e1f  ab ≥ e1f)
⊢ ¬xb>xy
BY
((Assert xa ≥ xb BY
          (Auto
           THEN (Assert xa ≥ bx BY
                       ((InstLemma  `geo-axiom-contrapositive` [⌜g⌝;⌜x⌝;⌜a⌝;⌜b⌝]⋅ THEN Auto) THEN THEN Auto))
           THEN RepeatFor (ParallelLast)
           THEN (InstLemma  `geo-gt-prim-symmetry` [⌜g⌝;⌜x⌝;⌜b⌝;⌜x⌝;⌜a⌝]⋅ THEN Auto)
           THEN 0
           THEN Auto))
   THEN Auto
   }


Latex:


Latex:

1.  g  :  EuclideanPlaneStructure
2.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ab  \mgeq{}  cd)
3.  \mforall{}a,b,c:Point.    (ba>ac  {}\mRightarrow{}  b  \#  c)
4.  \mforall{}a,b,c:Point.    bc  \mgeq{}  aa
5.  \mforall{}a,b,c,d,e@0,f:Point.    (ab>cd  {}\mRightarrow{}  cd  \mgeq{}  e@0f  {}\mRightarrow{}  ab>e@0f)
6.  \mforall{}a,b,c,d,e@0,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd>e@0f  {}\mRightarrow{}  ab>e@0f)
7.  \mforall{}a,b,c:Point.    (B(abc)  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  ac>ab)
8.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca)
9.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c)
10.  \mforall{}a,b,c,d:Point.    (B(abd)  {}\mRightarrow{}  B(bcd)  {}\mRightarrow{}  B(abc))
11.  \mforall{}a,b,c,d,A,B,C,D:Point.
            (a  \#  b  {}\mRightarrow{}  B(abc)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  ab  \mcong{}  AB  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  ad  \mcong{}  AD  {}\mRightarrow{}  bd  \mcong{}  BD  {}\mRightarrow{}  cd  \mcong{}  CD)
12.  \mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  (\mneg{}a  \#  bc))
13.  \mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  leftof  ab)
14.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  (\mneg{}y  \#  ab)  {}\mRightarrow{}  y  \#  bc)
15.  x  :  Point
16.  a  :  Point
17.  b  :  Point
18.  y  :  Point
19.  a  \mequiv{}  b
20.  \mneg{}x  \#  ay
21.  xy  \mgeq{}  ay
22.  xy  \mgeq{}  xa
23.  \mforall{}a:Point.  a  \mequiv{}  a
24.  \mforall{}a,b:Point.    ab  \mcong{}  ba
25.  \mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc)
26.  \mforall{}a,b:Point.    (a  \#  b  {}\mRightarrow{}  b  \#  a)
27.  \mforall{}a,b,x,y:Point.    (aa  \mgeq{}  ab  {}\mRightarrow{}  a  leftof  xy  {}\mRightarrow{}  b  leftof  xy)
28.  \mforall{}a,b,c,d,e1,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd  \mgeq{}  e1f  {}\mRightarrow{}  ab  \mgeq{}  e1f)
\mvdash{}  \mneg{}xb>xy


By


Latex:
((Assert  xa  \mgeq{}  xb  BY
                (Auto
                  THEN  (Assert  xa  \mgeq{}  bx  BY
                                          ((InstLemma    `geo-axiom-contrapositive`  [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}  THEN  Auto)
                                            THEN  D  0
                                            THEN  Auto))
                  THEN  RepeatFor  2  (ParallelLast)
                  THEN  (InstLemma    `geo-gt-prim-symmetry`  [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{}  THEN  Auto)
                  THEN  D  0
                  THEN  Auto))
  THEN  Auto
  )




Home Index