Nuprl Lemma : distinct-triangles_wf
∀pg:ProjectivePlane. ∀t1,t2:pgeo-triangle(pg).  (distinct-triangles(pg;t1;t2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pgeo-triangle: pgeo-triangle(pg)
, 
distinct-triangles: distinct-triangles(pg;t1;t2)
, 
projective-plane: ProjectivePlane
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
pi2: snd(t)
, 
pi1: fst(t)
, 
pgeo-triangle: pgeo-triangle(pg)
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
distinct-triangles: distinct-triangles(pg;t1;t2)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-triangle_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-psep_wf
Rules used in proof : 
because_Cache, 
productElimination, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
productEquality, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}t1,t2:pgeo-triangle(pg).    (distinct-triangles(pg;t1;t2)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_51_17
Last ObjectModification:
2018_05_14-PM-03_19_35
Theory : euclidean!plane!geometry
Home
Index