Nuprl Lemma : pgeo-triangle_wf

[pg:ProjectivePlane]. (pgeo-triangle(pg) ∈ Type)


Proof




Definitions occuring in Statement :  pgeo-triangle: pgeo-triangle(pg) projective-plane: ProjectivePlane uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  and: P ∧ Q all: x:A. B[x] prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B pgeo-triangle: pgeo-triangle(pg) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  pgeo-incident_wf pgeo-line_wf pgeo-join_wf pgeo-plsep_wf pgeo-psep_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-point_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality setEquality rename setElimination lambdaEquality dependent_functionElimination because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[pg:ProjectivePlane].  (pgeo-triangle(pg)  \mmember{}  Type)



Date html generated: 2018_05_22-PM-00_51_07
Last ObjectModification: 2017_12_01-PM-04_36_30

Theory : euclidean!plane!geometry


Home Index