Nuprl Lemma : pgeo-join_wf

g:ProjectivePlaneStructure. ∀p,q:Point. ∀s:p ≠ q.  (p ∨ q ∈ {L:Line| L ∧ L} )


Proof




Definitions occuring in Statement :  pgeo-join: p ∨ q projective-plane-structure: ProjectivePlaneStructure pgeo-psep: a ≠ b pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T pgeo-join: p ∨ q uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: projective-plane-structure: ProjectivePlaneStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q top: Top
Lemmas referenced :  pi1_wf_top pgeo-line_wf projective-plane-structure_subtype pgeo-incident_wf subtype_rel_self all_wf pgeo-point_wf sq_stable_wf pgeo-plsep_wf or_wf pgeo-lsep_wf pgeo-psep_wf exists_wf sq_exists_wf projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis productEquality because_Cache dependentIntersectionElimination dependentIntersectionEqElimination tokenEquality lambdaEquality setElimination rename functionEquality functionExtensionality productElimination independent_pairEquality dependent_set_memberEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}p,q:Point.  \mforall{}s:p  \mneq{}  q.    (p  \mvee{}  q  \mmember{}  \{L:Line|  p  I  L  \mwedge{}  q  I  L\}  )



Date html generated: 2018_05_22-PM-00_30_18
Last ObjectModification: 2017_10_27-PM-01_41_22

Theory : euclidean!plane!geometry


Home Index