Nuprl Lemma : dual-point-subtype

[pg:BasicProjectivePlane]. (Point ⊆Line)


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-dual: pg* pgeo-line: Line pgeo-point: Point subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B pgeo-line: Line btrue: tt mk-pgeo-prim: mk-pgeo-prim pgeo-dual-prim: pg* bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) pgeo-dual: pg* record-select: r.x pgeo-point: Point member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf subtype_rel_transitivity basic-projective-plane-subtype projective-plane-structure_subtype pgeo-line_wf subtype_rel_self
Rules used in proof :  axiomEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[pg:BasicProjectivePlane].  (Point  \msubseteq{}r  Line)



Date html generated: 2018_05_22-PM-00_34_25
Last ObjectModification: 2017_12_01-PM-05_16_36

Theory : euclidean!plane!geometry


Home Index