Nuprl Lemma : dual-point-subtype
∀[pg:BasicProjectivePlane]. (Point ⊆r Line)
Proof
Definitions occuring in Statement : 
basic-projective-plane: BasicProjectivePlane
, 
pgeo-dual: pg*
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
pgeo-line: Line
, 
btrue: tt
, 
mk-pgeo-prim: mk-pgeo-prim, 
pgeo-dual-prim: pg*
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3)
, 
pgeo-dual: pg*
, 
record-select: r.x
, 
pgeo-point: Point
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
subtype_rel_transitivity, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
subtype_rel_self
Rules used in proof : 
axiomEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[pg:BasicProjectivePlane].  (Point  \msubseteq{}r  Line)
Date html generated:
2018_05_22-PM-00_34_25
Last ObjectModification:
2017_12_01-PM-05_16_36
Theory : euclidean!plane!geometry
Home
Index