Step
*
1
1
2
2
3
of Lemma
eu-eq_dist-axiomA10
1. G : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. g : Point
9. D(a;b;c;d;e;f)
10. D(c;d;e;f;a;b)
11. |ab| < |cd| + |ef|
12. e ≠ f
13. |ef| < |ab| + |cd|
14. a ≠ b
15. |ab| ≠ |cd| + |ef|
16. |ef| ≠ |ab| + |cd|
17. |ab| + |cd| ≠ |cd| + |ef|
18. |cd| + |ef| ≠ |ab| + |cd|
19. X ≠ |ef|
20. X_|cd| + |ef|_|ab| + |cd| ∨ X_|ab| + |cd|_|cd| + |ef|
⊢ c ≠ d
BY
{ D -1 }
1
1. G : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. g : Point
9. D(a;b;c;d;e;f)
10. D(c;d;e;f;a;b)
11. |ab| < |cd| + |ef|
12. e ≠ f
13. |ef| < |ab| + |cd|
14. a ≠ b
15. |ab| ≠ |cd| + |ef|
16. |ef| ≠ |ab| + |cd|
17. |ab| + |cd| ≠ |cd| + |ef|
18. |cd| + |ef| ≠ |ab| + |cd|
19. X ≠ |ef|
20. X_|cd| + |ef|_|ab| + |cd|
⊢ c ≠ d
2
1. G : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. g : Point
9. D(a;b;c;d;e;f)
10. D(c;d;e;f;a;b)
11. |ab| < |cd| + |ef|
12. e ≠ f
13. |ef| < |ab| + |cd|
14. a ≠ b
15. |ab| ≠ |cd| + |ef|
16. |ef| ≠ |ab| + |cd|
17. |ab| + |cd| ≠ |cd| + |ef|
18. |cd| + |ef| ≠ |ab| + |cd|
19. X ≠ |ef|
20. X_|ab| + |cd|_|cd| + |ef|
⊢ c ≠ d
Latex:
Latex:
1. G : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. g : Point
9. D(a;b;c;d;e;f)
10. D(c;d;e;f;a;b)
11. |ab| < |cd| + |ef|
12. e \mneq{} f
13. |ef| < |ab| + |cd|
14. a \mneq{} b
15. |ab| \mneq{} |cd| + |ef|
16. |ef| \mneq{} |ab| + |cd|
17. |ab| + |cd| \mneq{} |cd| + |ef|
18. |cd| + |ef| \mneq{} |ab| + |cd|
19. X \mneq{} |ef|
20. X\_|cd| + |ef|\_|ab| + |cd| \mvee{} X\_|ab| + |cd|\_|cd| + |ef|
\mvdash{} c \mneq{} d
By
Latex:
D -1
Home
Index