Nuprl Lemma : eu-eq_dist-axiomA10

G:EuclideanPlane. ∀a,b,c,d,e,f,g:Point.  (D(a;b;c;d;e;f)  D(c;d;e;f;a;b)  c ≠ d)


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: euclidean-plane: EuclideanPlane uall: [x:A]. B[x] or: P ∨ Q basic-geometry: BasicGeometry member: t ∈ T implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q squash: T true: True rev_implies:  Q uiff: uiff(P;Q) false: False geo-length: |s| top: Top cand: c∧ B
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf dist_wf geo-add-length-lt-sep dist-lemma-lt geo-add-length-lt-sep2 geo-sep-or geo-length_wf1 geo-mk-seg_wf geo-add-length_wf1 geo-sep_wf geo-sep-iff-or-lt geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-zero2 geo-length_wf geo-add-length_wf subtype_rel_self iff_weakening_equal geo-add-length-comm geo-add-length-cancel-left-lt geo-lt-sep geo-lt-null-segment geo-congruent-sep geo-X_wf geo_seg2_mk_seg_lemma istype-void geo_seg1_mk_seg_lemma geo-extend-property geo-O_wf geo-sep-O-X geo-between-same-side-or geo-le_wf geo-le-add1 geo-le-iff-between-points geo-le_weakening-lt geo-lt_transitivity2 geo-add-length-zero3 geo-add-length-cancel-right-lt
Rules used in proof :  independent_isectElimination instantiate applyEquality inhabitedIsType rename setElimination isectElimination universeIsType unionElimination because_Cache sqequalRule hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality_alt equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality hyp_replacement applyLambdaEquality voidElimination isect_memberEquality_alt independent_pairFormation

Latex:
\mforall{}G:EuclideanPlane.  \mforall{}a,b,c,d,e,f,g:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  D(c;d;e;f;a;b)  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2019_10_16-PM-02_58_18
Last ObjectModification: 2019_02_28-PM-05_37_45

Theory : euclidean!plane!geometry


Home Index