Nuprl Lemma : eu-eq_dist-axiomA10
∀G:EuclideanPlane. ∀a,b,c,d,e,f,g:Point.  (D(a;b;c;d;e;f) 
⇒ D(c;d;e;f;a;b) 
⇒ c ≠ d)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f)
, 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
basic-geometry: BasicGeometry
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
false: False
, 
geo-length: |s|
, 
top: Top
, 
cand: A c∧ B
Lemmas referenced : 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
dist_wf, 
geo-add-length-lt-sep, 
dist-lemma-lt, 
geo-add-length-lt-sep2, 
geo-sep-or, 
geo-length_wf1, 
geo-mk-seg_wf, 
geo-add-length_wf1, 
geo-sep_wf, 
geo-sep-iff-or-lt, 
geo-lt_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-add-length-zero2, 
geo-length_wf, 
geo-add-length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-add-length-comm, 
geo-add-length-cancel-left-lt, 
geo-lt-sep, 
geo-lt-null-segment, 
geo-congruent-sep, 
geo-X_wf, 
geo_seg2_mk_seg_lemma, 
istype-void, 
geo_seg1_mk_seg_lemma, 
geo-extend-property, 
geo-O_wf, 
geo-sep-O-X, 
geo-between-same-side-or, 
geo-le_wf, 
geo-le-add1, 
geo-le-iff-between-points, 
geo-le_weakening-lt, 
geo-lt_transitivity2, 
geo-add-length-zero3, 
geo-add-length-cancel-right-lt
Rules used in proof : 
independent_isectElimination, 
instantiate, 
applyEquality, 
inhabitedIsType, 
rename, 
setElimination, 
isectElimination, 
universeIsType, 
unionElimination, 
because_Cache, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
voidElimination, 
isect_memberEquality_alt, 
independent_pairFormation
Latex:
\mforall{}G:EuclideanPlane.  \mforall{}a,b,c,d,e,f,g:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  D(c;d;e;f;a;b)  {}\mRightarrow{}  c  \mneq{}  d)
Date html generated:
2019_10_16-PM-02_58_18
Last ObjectModification:
2019_02_28-PM-05_37_45
Theory : euclidean!plane!geometry
Home
Index