Nuprl Lemma : dist_wf
∀[g:EuclideanPlaneStructure]. ∀[a,b,c,d,e,f:Point].  (D(a;b;c;d;e;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dist: D(a;b;c;d;e;f)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
geo-point_wf, 
geo-sep_wf, 
geo-between_wf, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
setEquality, 
productEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[g:EuclideanPlaneStructure].  \mforall{}[a,b,c,d,e,f:Point].    (D(a;b;c;d;e;f)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-02_44_12
Last ObjectModification:
2018_09_21-AM-09_25_34
Theory : euclidean!plane!geometry
Home
Index