Nuprl Lemma : geo-add-length_wf1

[e:BasicGeometry]. ∀[x,y:{p:Point| O_X_p} ].  (x y ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  geo-add-length: q basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  cand: c∧ B implies:  Q so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B all: x:A. B[x] basic-geometry: BasicGeometry geo-add-length: q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf geo-between-exchange4 geo-between-exchange3 geo-between-inner-trans geo-between-symmetry geo-congruent_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf subtype_rel_sets geo-sep_wf geo-X_wf geo-between_wf geo-Op-sep geo-O_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality productElimination lambdaFormation setEquality productEquality lambdaEquality independent_isectElimination instantiate applyEquality dependent_set_memberEquality hypothesisEquality dependent_functionElimination hypothesis because_Cache isectElimination sqequalHypSubstitution extract_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y:\{p:Point|  O\_X\_p\}  ].    (x  +  y  \mmember{}  \{p:Point|  O\_X\_p\}  )



Date html generated: 2017_10_02-PM-04_53_17
Last ObjectModification: 2017_08_05-PM-04_10_19

Theory : euclidean!plane!geometry


Home Index