Nuprl Lemma : geo-add-length_wf1
∀[e:BasicGeometry]. ∀[x,y:{p:Point| O_X_p} ].  (x + y ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
basic-geometry: BasicGeometry
, 
geo-X: X
, 
geo-O: O
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
geo-add-length: p + q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set_wf, 
geo-between-exchange4, 
geo-between-exchange3, 
geo-between-inner-trans, 
geo-between-symmetry, 
geo-congruent_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
subtype_rel_sets, 
geo-sep_wf, 
geo-X_wf, 
geo-between_wf, 
geo-Op-sep, 
geo-O_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productElimination, 
lambdaFormation, 
setEquality, 
productEquality, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y:\{p:Point|  O\_X\_p\}  ].    (x  +  y  \mmember{}  \{p:Point|  O\_X\_p\}  )
Date html generated:
2017_10_02-PM-04_53_17
Last ObjectModification:
2017_08_05-PM-04_10_19
Theory : euclidean!plane!geometry
Home
Index