Nuprl Lemma : geo-add-length-cancel-right-lt

[e:BasicGeometry]. ∀[x,y,z:Length].  (z x <  z < y)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length-type: Length basic-geometry: BasicGeometry uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  geo-add-length-comm geo-lt_wf squash_wf true_wf geo-add-length_wf subtype_rel_self iff_weakening_equal geo-add-length-cancel-left-lt geo-length-type_wf basic-geometry_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination inhabitedIsType

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y,z:Length].    (z  +  x  <  y  +  x  {}\mRightarrow{}  z  <  y)



Date html generated: 2019_10_16-PM-01_20_01
Last ObjectModification: 2019_01_30-PM-01_20_06

Theory : euclidean!plane!geometry


Home Index