Nuprl Lemma : geo-le-iff-between-points

g:EuclideanPlane. ∀p,q:{p:Point| O_X_p} .  (p ≤ ⇐⇒ X_p_q)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-X: X geo-O: O euclidean-plane: EuclideanPlane geo-between: a_b_c geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry subtype_rel: A ⊆B prop: rev_implies:  Q guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane geo-le: p ≤ q squash: T sq_stable: SqStable(P) exists: x:A. B[x] geo-eq: a ≡ b not: ¬A geo-length-type: Length quotient: x,y:A//B[x; y] false: False cand: c∧ B
Lemmas referenced :  geo-le_wf subtype-geo-length-type geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-X_wf geo-point_wf geo-O_wf sq_stable__geo-between member_wf geo-eq_wf geo-sep_wf geo-between_functionality geo-eq_weakening geo-length-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination dependent_functionElimination setElimination rename inhabitedIsType setIsType because_Cache imageElimination independent_functionElimination productElimination imageMemberEquality baseClosed pertypeElimination productEquality setEquality dependent_pairFormation_alt productIsType equalityIsType1

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  O\_X\_p\}  .    (p  \mleq{}  q  \mLeftarrow{}{}\mRightarrow{}  X\_p\_q)



Date html generated: 2019_10_16-PM-01_34_02
Last ObjectModification: 2018_10_03-AM-11_16_57

Theory : euclidean!plane!geometry


Home Index