Nuprl Lemma : geo-sep-iff-or-lt

e:BasicGeometry. ∀x,y:{p:Point| O_X_p} .  (x ≠ ⇐⇒ x < y ∨ y < x)


Proof




Definitions occuring in Statement :  geo-lt: p < q basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q or: P ∨ Q basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane cand: c∧ B sq_stable: SqStable(P) squash: T basic-geometry-: BasicGeometry- geo-lt: p < q exists: x:A. B[x] geo-le: p ≤ q true: True
Lemmas referenced :  geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lt_wf subtype-geo-length-type geo-point_wf geo-between_wf geo-O_wf geo-X_wf geo-between-same-side-or geo-sep-O-X sq_stable__geo-between geo-between-symmetry geo-between-inner-trans geo-between-exchange3 subtype_rel_self basic-geometry-_wf geo-add-length-between geo-le_wf geo-add-length_wf geo-length_wf geo-mk-seg_wf geo-between-trivial geo-length-equality equal_wf squash_wf true_wf istype-universe geo-length-type_wf iff_weakening_equal geo-sep-sym geo-lt-iff-strict-between-points
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule setElimination rename unionIsType because_Cache inhabitedIsType setIsType dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination inlFormation_alt inrFormation_alt dependent_pairFormation_alt productIsType equalityTransitivity equalitySymmetry equalityIstype lambdaEquality_alt universeEquality natural_numberEquality productElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}x,y:\{p:Point|  O\_X\_p\}  .    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  x  <  y  \mvee{}  y  <  x)



Date html generated: 2019_10_16-PM-01_37_55
Last ObjectModification: 2019_02_18-PM-05_08_39

Theory : euclidean!plane!geometry


Home Index