Nuprl Lemma : geo-between-same-side-or
∀e:BasicGeometry. ∀A,B,C,d:Point.  ((A # B ∧ C # d) 
⇒ B(ABC) 
⇒ B(ABd) 
⇒ (B(ACd) ∨ B(AdC)))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-between: B(abc)
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
geo-eq: a ≡ b
, 
stable: Stable{P}
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4, 
stable__geo-between, 
double-negation-hyp-elim, 
geo-construction-unicity, 
geo-strict-between-sep2, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-congruent-iff-length, 
geo-proper-extend-exists, 
subtype_rel_self, 
geo-strict-between-sep1, 
geo-sep-or, 
geo-between-same-side, 
istype-void, 
not_over_or, 
not_wf, 
iff_weakening_uiff, 
geo-strict-between-sep3, 
geo-sep-sym, 
geo-between-sep, 
geo-point_wf, 
geo-sep_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-between_wf
Rules used in proof : 
inlFormation_alt, 
inrFormation_alt, 
equalitySymmetry, 
unionElimination, 
dependent_set_memberEquality_alt, 
rename, 
setElimination, 
unionIsType, 
functionIsType, 
voidElimination, 
productEquality, 
unionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
inhabitedIsType, 
productIsType, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
universeIsType, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,d:Point.    ((A  \#  B  \mwedge{}  C  \#  d)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  B(ABd)  {}\mRightarrow{}  (B(ACd)  \mvee{}  B(AdC)))
Date html generated:
2019_10_29-AM-09_14_35
Last ObjectModification:
2019_10_18-PM-03_17_42
Theory : euclidean!plane!geometry
Home
Index