Nuprl Lemma : geo-lt-sep

e:BasicGeometry. ∀a,b,c,d:Point.  (|ab| < |cd|  c ≠ d)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo_ge: geo_ge(e; p; q)
Lemmas referenced :  geo-zero-lt-iff geo-zero-le geo-length_wf geo-mk-seg_wf geo-lt_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-zero-length_wf geo-lt_functionality_wrt_implies geo-le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation independent_functionElimination isectElimination setElimination rename universeIsType because_Cache inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (|ab|  <  |cd|  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2019_10_16-PM-01_19_53
Last ObjectModification: 2018_10_02-PM-02_27_34

Theory : euclidean!plane!geometry


Home Index